STOPE BOUNDARY OPTIMISATION FOR UNDERGROUND MINES

Supervisor: Prof. Montaz Ali

Alex Alochukwu, Babatunde Sawyerr, John Atherfold, Krupa Prag, Micheal Olusanya, Patience Adamu, Peter Popoola, Sakirudeen Abdulsalaam, Vincent Langat

January 19, 2018

GROUP 3: MATHEMATICS IN INDUSTRY STUDY GROUP (MISG) 2018

The Stope Boundary Optimization Problem (SBOP) involves choosing a certain configuration of stopes which maximizes the Net Profit Value, (NPV), subject to the stope dimension constraints.

Our approach involves the following:

- $\cdot\,$ The development of a mathematical model for the SBOP
- $\cdot\,$ The exploration of various optimization algorithms for the SBOP
- The development of a hybrid algorithm for the SOP which contains components of Dynamic Programming (DP) and Particle Swarm Optimization (PSO).

2D Schematic of Stope Configuration Instance

15	0	3	-8	7	32
8	74	1	19	27	-4
-22	10	90	2	-71	4
30	60	32	-40	3	-20
55	1	-13	-44	22	85
-22	33	64	2	-9	4

For the sake of simplicity, we developed the mathematical formulation in 2D, and extend it to 3D. The following assumptions were made in creating the 2D mathematical model:

- \cdot Let the mining area be represented by a grid with dimension, $n \times m.$
- $\cdot\,$ The grid is made up of distinct blocks with predefined values
- $\cdot\,$ The stope dimension is fixed for 2D case, say $\alpha\,x\,\beta$.
- \cdot The decision variable is binary,
- To ensure that the stopes are on the same level for easy mining, we use the following strategy: If $x_{ij} = 0$, then move to x_{ij+1} ; If $x_{ij} = 1$, then move to $x_{ij+\beta}$; Once the level has been exhausted, move to $x_{i+\alpha j}$, and repeat the steps.

MATHEMATICAL FORMULATION: 2D

Maximize
$$\sum_{i=1}^{n-p} \sum_{j=1}^{m-q} V_{ij} x_{ij},$$
 (1)

Subject to:

$$\sum_{i}^{i+p} \sum_{j}^{j+q} x_{ij} \leq 1, \forall i \in \{1, \dots n-p\}, \forall j \in \{1, \dots m-q\}$$
(2)
$$x_{ij} - \sum_{j'=j+1}^{j+q} x_{ij'} = 1 \quad \forall i \in \{1, \dots n-p\}, \forall j \in \{1, \dots m-q\}$$
(3)
$$x_{ij} - \sum_{i'=i+1}^{i+p} x_{i'j} = 1 \quad \forall i \in \{1, \dots n-p\}, \forall j \in \{1, \dots m-q\}$$
(4)

$$x_{ij} - \sum_{i'=i+1}^{i+p} \sum_{j'=j+1}^{j+q} x_{i'j'} = 1 \quad \forall i \in \{1, \dots, n-p\}, \forall j \in \{1, \dots, m-q\} (5)$$

where
$$V_{ij} = \sum_{i}^{i+p} \sum_{j=q}^{j+q} u_{ij}, \quad p = \alpha - 1 \text{ and } q = \beta - 1. \quad x_{ij} \in \{0, 1\}$$

Next, we extend this model to the 3D SBOP, allowing for variable stope dimensions:

Maximize
$$\sum_{i=1}^{n-p} \sum_{j=1}^{m-q} \sum_{k=1}^{s-r} V_{ijk} x_{ijk}$$
, (6)

Subject to:

$$\sum_{i}^{i+p} \sum_{j}^{j+q} \sum_{k}^{k+r} x_{ijk} \le 1, \forall i \in \{1, \dots, n-p\}, \forall j \in \{1, \dots, m-q\}, \forall k \in \{1, \dots, s-r\}$$

$$x_{ijk} - \sum_{j'=j+1}^{j+q} x_{ij'k} = 1 \quad \forall i \in \{1, \dots, n-p\} \forall j \in \{1, \dots, m-q\}, \forall k \in \{1, \dots, s-r\}$$

$$x_{ijk} - \sum_{i'=i+1}^{i+p} x_{i'jk} = 1 \quad \forall i \in \{1, \dots, n-p\}, \forall j \in \{1, \dots, m-q\}, \forall k \in \{1, \dots, s-r\}$$

$$x_{ijk} - \sum_{k'=k+1}^{k+r} x_{ijk'} = 1 \quad \forall i \in \{1, \dots, n-p\}, \forall j \in \{1, \dots, m-q\}, \forall k \in \{1, \dots, s-r\}$$

$$x_{ijk} - \sum_{i'=i+1}^{i+p} \sum_{j'=j+1}^{j+q} \sum_{k'=i+1}^{k+s} x_{i'j'k'} = 1 \quad \forall i \in \{1, \dots, n-p\}, \forall j \in \{1, \dots, m-q\},$$

 $\forall k \in \{1, \cdots s - r\}$

$$x_{ijk} - \sum_{i'=i+1}^{i+p} \sum_{j'=j+l}^{m-1} \sum_{k'=k+1}^{s-1} x_{i'j'k'} = 1 \quad \forall i \in \{1, \dots, n-p\}, \forall j \in \{1, \dots, m-q\},$$

$$\forall k \in \{1, \cdots s - r\}$$

where
$$V_{ijk} = \sum_{i}^{i+p} \sum_{j}^{j+q} \sum_{k}^{k+r} u_{ijk},$$
 (7)

$$p = \alpha - a$$
, $q = \beta - b$ and $r = \gamma - 1$ (8)

$$x_{ijk} \in \{0, 1\}$$
 (9)

$$a = 1, ..., n, b = 1, ..., m.$$
 (10)

We have been able to successfully implement and test the following heuristics for the SBOP:

- · Maximum value algorithm
- · Multi-Start Algorithm
- · DP-inspired Heuristic
- · Particle Swarm Optimisation

This heuristic is inspired by the Dynamic Programming idea of sub-dividing a large problem into smaller ones, solving them, and then combining the solutions to get a solution to the large version of the problem. The algorithm is as follows:

- Input: Array containing the value of each block, stope size, mining site dimentions. Let *K* be the stope size, *fd*, the width of the site, and *fl* the length of the site.
- STEP 1: Create an array $(fd k + 1 \times fl k + 1)$ that stores all the possible stopes.
- $\cdot\,$ STEP 2: Get the value of each possible stope.
- STEP 3: Get all the possible configurations with their values, skipping stopes with negative values
- $\cdot\,$ STEP 4: Pick the stope layout with the highest revenue.

STEP 1: Calculate the V_{ij} by summing the u_{ij} for each possible stope.

STEP 2: Demarcate the whole orebody into levels of size equal to the height of the stope.

STEP 3: In each level determine the the possible number of stopes that can be extracted based on their values(A stope with a maximum value chosen first,followed by a stope with the second maximum value,and so on, ensuring that there is no stope overlap.

STEP 4: Determine the the Net Present Value(NPV) by summing up the V_{ij} for all the possible stopes that can be extracted.

BLOCK VALUES AT EACH CELL

1	/ -20	-20	2	7	9	-1	4	-5	7 \
I	9	6	3	2	3	-13	23	56	-21
I	1	-2	4	5	7	-40	0	-11	51
I	3	0	5	4	-60	30	14	1	31
I	-4	-7	6	3	-10	4	12	14	34
I	3	0	7	2	-23	2	4	22	-15
I	-4	-7	8	1	12	12	3	1	11
I	5	2	6	2	3	0	1	-50	-20
I	11	8	0	-1	17	-42	11	0	17
l	17	0	3	4	23	-2	2	65	23
I	-3	-6	2	-60	18	11	1	54	12
I	8	5	6	3	1	0	3	3	2
	10	7	-7	-2	18	4	14	9	-57
1	8	—11	0	-50	12	18	-45	21	7

STOPE VALUES AT EACH CELL

1	′ –25	-9	14	21	-2	13	78	37	0)
	0	0	0	0	0	0	0	0	0
l	2	7	18	_44	-63	4	4	72	0
l	0	0	0	0	0	0	0	0	0
l	-8	6	18	-28	-27	22	52	55	0
l	0	0	0	0	0	0	0	0	0
l	_4	9	17	18	27	16	-45	-58	0
l	0	0	0	0	0	0	0	0	0
l	36	11	6	43	-4	-31	78	105	0
	0	0	0	0	0	0	0	0	0
l	4	7	-49	-38	30	15	61	71	0
l	0	0	0	0	0	0	0	0	0
	-2	-11	-59	-22	52	-9	-1	-20	0
l	0	0	0	0	0	0	0	0	0 /

Max Search Multi-Start						
	Case A Case B (
Global Searches	14	2 * 14	14 ²			
Local Searches	9 2*9		9 ²			
Average Stopes	11.2	11.6	11.6			
Average Global Value	471.4	493.8	484.0			
Stope Fraction	0.36	0.37	0.37			

Random Search Multi-Start

	Case A	Case B	Case C
Global Searches	14	2 * 14	14 ²
Local Searches	9	2*9	9 ²
Average Stopes	2.6	2.6	2.4
Average Global Value	112.8	78.8	74.6
Stope Fraction	0.08	0.08	0.07

· Is a greedy modification beneficial?

Figure: MS Evaluation using Max Search and Random Search

MS - RESULTS MINE

Figure: MS Evaluation using Max Search and Random Search

- $\cdot\,$ Modification of Pure Random MS algorithm improves solutions.
- $\cdot\,$ Number of search iterations influences the outcome.
- · Possible improvement implementations:
 - · Parallel MS
 - · Alternate local search techniques

- $\cdot\,$ Simulates the motion of flocking birds
- \cdot <code>Population</code> Initial positions of each particle in the swarm
- $\cdot P_k^i$ Personal best position of the *i*th particle after the kth time step
- $\cdot g_k$ Global best position of all particles at k^{th} time step.
- · Population_{k+1} = Population + Vel_{k+1}
- · $Vel_{k+1} = \omega * vel_k + c_1 * r_1 * (P_k^i Pop) + c_2 * r_2 * (g_k Pop)$

- Stope fraction = $\frac{No. of stopes used}{Total number of allowed stopes}$.
- $\cdot\,$ Stope fraction was fixed binary decision matrices were initiated.
- · 1000 population members 1000 matrices
- Each member of the population was a set of co-ordinates representing the ones in their respective matrix.
- · Fitness = Config Value -k * (Overlap Penalty) k * (Level Penalty)

PSO - BUT DOES IT WORK? - YES

-20	-20	2	7	9	-1	4	-5	7
9	6	3	2	3	-13	23	56	-21
1	-2	4	5	7	-40	0	-11	51
3	0	5	4	-60	30	14	1	31
-4	-7	6	3	-10	4	12	14	34
3	0	7	2	-23	2	4	22	-15
-4	-7	8	1	12	12	3	1	11
5	2	6	2	3	0	1	-50	-20
11	8	0	-1	17	-42	11	0	17
17	0	3	4	23	-2	2	65	23
-3	-6	2	-60	18	11	1	54	12
8	5	6	3	1	0	3	3	2
10	7	-7	-2	18	4	14	9	-57
-8	-11	0	-50	12	18	-45	21	7

- **Constant** stope size was considered (2 x 2)
- $\cdot\,$ Various stope fractions were considered.
- For each stope fraction, five experiments were run, with 100 iterations per experiment.
- For each iteration, the maximum fitness value of that population is taken and stored.
- After each experiment, the mean maximum population values were considered, for every iteration.
- $\cdot\,$ These results are presented for various stope fractions.

- $\cdot\,$ Different configuration values for different stope fractions.
- \cdot Upon convergence, 0.4 \rightarrow worst, 0.48 \rightarrow best.
- Is there a relationship between stope fraction and mine value? Consider mine 2...

PSO - Results Mine 2

- · Upon convergence, 0.84 \rightarrow worst, 0.76 \rightarrow best.
- No clear relationship maybe some intrinsic properties of each mine that dictate optimal stope fraction (BEV distribution?)
- · Looking at the data slightly differently...

PSO - RESULTS STOPE FRACTION

- $\cdot\,$ Variation of maximum values as a function of mass fraction
- Since these curves are completely uncorrelated, the BEV distribution per mine plays a large role in stope configuration design.

The pseudo-code for the hybrid algorithm which we have developed is as follows:

- Input: Mining site dimensions, array containing mining data with BEVs for each block, stope dimensions.
- STEP 1: For i = 1 to swarmSize
- dpSolution = DPH() swarm.add(dpSolution)
- · STEP 2: PSO(swarm)
- · Output PSO.gbest as best solution
- · Output *swarm* as set of alternative solutions.

In conclusion, we have been able to successfully achieve the following:

- \cdot Develop Mathematical model for the 2D SBOP
- \cdot Develop Mathematical model for the 3D SBOP
- · Develop and test DP-esque heuristic, Multi-Start, and PSO

What we haven't been able to do (for shortness of time):

- $\cdot\,$ Extend solution methods to 3D case
- $\cdot\,$ Implement hybrid DP-esque and PSO algorithm